

AUTHORIZED DISTRIBUTOR
ELECTRO MOTIVE

NEW 144-AUTO FERRIES PROJECT 4420 14TH AVENUE NW – SEATTLE, WA 98107 Tel. 206-834-2329 Fax. 206-782-5455

3-DOC-008 Rev. - (Formerly Calculation P-0291-08) (Centa 3-05905)

Contract 00-6679

ENGINEERING CALCULATION

HIGH SPEED SHAFTING DEFLECTION, BENDING STRESS & RESONANCE

Submitted by: The Centa Corporation

Date:

March 30, 2006

Reviewed/Approved by:

Christopher K Lane, PE

Date

CALCULATION

TITLE: HIGH SPEED SHAFT DEFLECTION, BENDING STRESS AND RESONANCE

PURPOSE:

Determine the maximum shaft deflection for the maximum tube length and verify that the resulting bending stresses are within limits and that sufficient margin to shaft resonance exists.

SPECIFICATIONS AND ASSUMPTIONS:

 It is assumed that a calculation at maximum length will result in lower frequency, therefore shorter lengths will result in higher frequencies and therefore further from the operating speed range, resulting in a higher margin of safety.

The critical bending speed nkrit can be calculated with the formula

$$\omega^2 = \left(\frac{\pi}{I}\right)^4 \cdot \frac{\hat{E}_x \cdot I_y}{\rho \cdot A}$$

further the I_{ν} second moment of area of a cylindrical circle and thin-walled tube calculates to:

$$I_{v} \approx \frac{\pi \cdot d_{m}^{3} \cdot t}{8}$$

$$d_m = \frac{D_a + D_i}{2}$$

$$t = \frac{D_a - D_i}{2}$$

$$\omega_{krit} = \frac{\pi^2}{\sqrt{8}} \cdot \frac{d_m}{l^2} \cdot \sqrt{\frac{\hat{E}_x}{\rho}}$$

$$\omega = 2 \cdot \pi \cdot f$$

$$n = 60 \cdot f$$

$$n_{krit} = \frac{30\pi}{\sqrt{8}} \cdot \frac{d_m}{l^2} \cdot \sqrt{\frac{\hat{E}_x}{\rho}}$$

REFERENCES:

1. Given Data:

CL-75 For Coupling Type $d_a = 240 \text{ mm}$ Outer Diameter $d_i = 226 \text{ mm}$ Inner Diameter Mean Diameter $d_m = 233 \text{ mm}$ $t = 7 \, \text{mm}$ Wall Thickness 1 = 4898 mmLength of Tube $m_r = 197.01 \text{ kg}$ Mass of Tube $T_N = 24100 \text{ Nm}$ Nominal Torque of Drive Line Steel Material $R_e = 235 \text{ N/mm}^2$ **Proof Stress** $\hat{E}_x = 205000 \text{ N/mm}^2$ E-modul $\rho = 7850 \text{ kg/m}^3$ Specific Material f = 1/sFrequency m = 1000 mmMeter Ø krit Critical Angular Speed

CALCULATION:

$$n_{km} = \frac{30\pi}{\sqrt{8}} \cdot \frac{0,233m}{(4,898m)^2} \cdot \sqrt{\frac{205000 \cdot 10^6 \frac{N}{m^2}}{7850 \frac{kg}{m^3}}}$$

 $\begin{array}{ll} \text{Maximum Deflection} & \text{$f_{m} = 0.405 \text{ mm}$} \\ \text{On position} & \text{$x = 2449.0 \text{ mm}$} \\ \text{Natural Frequency of the Tube} & \text{$f_{e} = 27.6 \text{ Hz}$} \\ \text{Resonance Speed} & \text{$n_{krit} = 1654 \text{ rpm}$} \\ \end{array}$

$$safety = \frac{n_{knt}}{n_{op}}$$
$$safety = \frac{1654}{930} = 1,78$$

Calculated Torque & Bending Stress sigma $V = 72.1 \text{ N/mm}^2$ Allowable Bending Stress sigma $A = 211.5 \text{ N/mm}^2$ Resulting Load Factor 34.1 %

CONCLUSION:

The safety margins are satisfactory regarding bending and loads relating to the shaft resonance.